

Phase curve studies of known transiting systems with TESS

Ian Wong (MIT/EAPS) TESS Science Conference I July 30, 2019

Transiting Exoplanet Survey Satellite (TESS)

Secondary eclipse Atmospheric brightness modulation

WASP-18

Shporer, Wong et al. (2019)

- Secondary eclipse depth: 341±18 ppm
- All three phase curve components detected:
 - atmospheric brightness 174±6 ppm
 - ellipsoidal distortion 191±6 ppm
 - Doppler boosting 21±5 ppm

• Nightside flux ~ 0 ppm (<1 σ), no phase shift (δ < 2.9°; 2 σ)

poor day-night
heat recirculation

• Low albedo (A $_{g}$ < 0.048; 2 σ)

WASP-19

Wong et al. (2016)

WASP-19

Wong et al., in prep

WASP-19 emission spectrum

- Dayside temperature: 2240 ± 40 K
- TESS band albedo: 0.16 ± 0.04

Wong et al., in prep

Systematic phase curve study

- Uniform dataset and analysis framework
- Target selection:
 - TESS mag < 12.5
 - low stellar variability
 - predicted eclipse depth > 100 ppm
 - ellipsoidal and/or beaming amplitudes > 50 ppm

Some highlights

WASP-30 (60 M_J brown dwarf): 5σ ellipsoidal distortion signal

Secondary eclipse + atmospheric brightness modulation measured for:

WASP-43, WASP-72, WASP-82, WASP-100, WASP-111, WASP-122...

Also check out:

Thanks!

- Tara Fetherolf: Global analysis of *TESS* phase curves from Year 1 (#47)
- Tansu Daylan: WASP-121b phase curve (#48)